

Ruminale Umsetzung des Rohproteins und der Stärke in situ und in vitro - Mais

TP9

N. Seifried, J. Krieg, H. Steingaß, M. Rodehutscord

Institut für Nutztierwissenschaften, Universität Hohenheim, Stuttgart

Material und Methoden

In situ

- 1, 2, 4, 8, 16, 24, 48 und 72 h Inkubation
- Nylonbeutel (Porengröße 50 μm); n = 3 Tiere (Jersey)
- Berechnung: effektiver Abbau (ED) für Passageraten von
 5 und 8 %/h

Tabelle 1: Kennzahlen des *in situ* Abbaus 20 verschiedener Mais-Genotypen; n = 3

	Stärke					XP				
Genotyp	a	b	C	ED ₅	ED ₈	а	b	C	ED ₅	ED ₈
7 •	(%)		(%/h)	(%)		(%)		(%/h)	(%)	
1	13	87	6,4	62	52	24	76	5,4	63	54
2	28	72	6,9	69	61	35	65	5,7	70	62
3	21	79	7,2	67	58	20	80	5,5	62	53
4	20	80	6,9	66	57	22	78	5,5	63	54
5	15	85	5,7	60	51	25	75	4,9	62	54
6	18	82	5,7	62	52	26	74	4,6	62	53
7	32	68	8,9	76	68	27	72	6,5	68	60
8	32	68	8,6	75	67	26	74	6,4	68	59
9	12	88	5,4	58	48	18	82	4,1	55	46
10	10	90	5,8	58	48	20	80	4,5	58	49
11	17	83	7,4	66	57	20	80	5,2	61	51
12	11	89	7,7	65	54	19	81	5,1	60	50
13	8	92	6,3	59	48	17	83	4,6	56	47
14	18	82	6,8	65	55	20	80	4,7	59	50
15	13	87	7,3	64	54	22	78	5,0	61	52
16	14	86	5,3	58	48	17	83	4,1	54	45
17	23	77	7,4	69	60	25	75	5,6	65	56
18	13	87	6,4	61	51	20	80	4,9	60	50
19	25	75	6,9	69	60	23	77	5,2	62	53
20	25	75	6,7	68	59	25	75	5,2	63	54
MW	18	82	6,8	65	55	23	77	5,1	62	53
SD	7,2	7,2		5,2	6,0	4,3	4,4		4,1	4,5

Fett schwarz gedruckte Werte ≙ Minimum bzw. Maximum der jeweiligen Spalte

Tabelle 2: in vitro Charakterisierung 20 verschiedener Mais-Genotypen

Genotyp	Gasb	ildung	3	Energie	4014	enXP	
	Gb 24h	b	С	ME	dOM	6 %/h	8 %/h
	(ml/200mg TM)		(%/h)	(MJ/kg TM)	(%)	(%)	
1	70	85	6,2	13,5	91,4	162	175
2	63	75	7,7	13,6	85,2	162	171
3	75	87	7,3	13,8	94,4	171	188
4	76	87	7,5	13,8	96,3	175	190
5	68	82	6,7	13,8	90,7	168	176
6	68	86	6,0	13,9	92,7	169	178
7	77	89	7,9	13,9	98,0	170	184
8	79	87	8,3	14,1	96,9	156	167
9	72	87	6,8	13,7	95,6	167	175
10	75	89	7,0	13,8	96,9	157	165
11	78	88	7,4	14,2	97,1	159	169
12	74	86	7,2	13,7	95,4	163	171
13	75	88	6,8	13,9	96,8	170	178
14	78	89	6,8	14,2	97,0	157	165
15	72	88	7,3	13,5	96,4	153	163
16	74	85	6,4	13,7	91,7	165	177
17	78	86	7,6	14,2	93,8	158	172
18	76	84	6,7	13,9	91,2	159	172
19	76	84	7,5	13,8	91,7	160	174
20	76	84	7,8	13,9	93,2	162	176
MW	74	86	7,1	13,8	94,1	163	174
SD	4,0	3,1		0,2	3,2	5,9	7,2

Fett schwarz gedruckte Werte ≙ Minimum bzw. Maximum der jeweiligen Spalte

In vitro

- Gasbildungskinetik im Hohenheimer Futterwerttest (HFT) und nutzbares Rohprotein (nXP) im modifizierten HFT
- Schätzung: effektives nXP (enXP), Umsetzbare Energie (ME),
 Verdaulichkeit der Organischen Masse (dOM)

Ergebnisse

In situ

- Im Mittel ähnliche Werte für XP- und Stärkeabbau
- Langsame Abbauraten → Geringer ED
- Hohe Variation zwischen den Genotypen
- Enge lineare Beziehung zwischen TM-Abbau und Nährstoffabbau
- Negative Korrelationen (p < 0,01) des ED von XP und Stärke mit Schüttdichte und XP-Gehalt (Korrelationen mit anderen Rohnährstoffen n.s.)
- Negative Korrelationen (p < 0,001) des ED von XP und Stärke mit Glu, Ala, Leu und Phe sowie positive Korrelationen (p < 0,001) mit Asp, Gly, Lys, Arg und Trp (g/16 g N)

In vitro

- Hohe potentielle GB und niedrige GB-Rate →
 Hohe ME-Gehalte und dOM
- Negative Korrelationen (p < 0,05) des Plateau der GB mit XL und positive Korrelationen (p < 0,05) mit Hektolitergewicht (HLG) und Stärke
- Negative Korrelationen (p < 0,05) der GB-Rate mit HLG und XP und positive Korrelationen (p < 0,05) mit einer Vielzahl von in situ Werten (einzelne Zeitpunkte und Parameter des Abbaus)
- Variation zwischen den Genotypen vorhanden
- Effektives nXP vergleichbar mit Literaturwerten bei einer Passagerate von 6 %/h

Fazit

- Hohe Variation zwischen einzelnen Genotypen →
 Variationen lassen sich gut durch Unterschiede in phys. und chem. Eigenschaften erklären
- Vergleichbares Niveau der in situ Abbauraten und der GB-Rate sowie ähnliche Rangierung der Genotypen
- Schätzung des ED aus Inhaltsstoffen und GB mit hoher Genauigkeit möglich

